Objectives

To provide an evidence base for a trisomy effect on biochemical micronutrient needs for growth, development and disease management in Down Syndrome.

To provide an evidence base for biochemical micronutrient intervention to optimize growth and development, and to mitigate and manage related diseases of the thyroid, leukemia and Alzheimer's-like neurological decline, in Down Syndrome.
Down Syndrome: the Implications

Down Syndrome results from a (third arm) on chromosome 21. This trisomy is associated with changes in:
Neurological development
Physical growth
Muscle to fat ratio
Immunity and resistance to infection
Risk of leukemia
Risk of thyroid dysfunction
Risk of diabetes and blood sugar abnormalities
Precocious aging
Alzheimer-like lesions

Down Syndrome: an Analogy

1. A 2-arm chromosome (normal) is like a recipe:
 Arms x 2 → Ingredients x 2 → Product x 2

2. A 3-arm chromosome (trisomy) increases production by 50%:
 Arms x 3 → Ingredients x 3 → Product x 3

 Where do the extra ingredients come from?
Down Syndrome: the Functional Paradigm

3. 50% more ingredients required causes:
 a) faster depletion of ingredient stores
 b) ‘stealing’ ingredients from other functions in the body

4. Decreased availability of ingredients leads to:
 a) decreased ingredients for growth + development
 b) decreased ingredients for disease prevention
 c) decreased ingredients for healthy aging

Down Syndrome: Enzyme Overexpression

There are three well-documented enzymes coded on Chromosome 21 which increase requirements for zinc, selenium and vitamin B12:

1) Cu-Zn SuperOxide Dismutase (SOD): a zinc dependent enzyme.
2) Glutathione Peroxidase: a selenium dependent enzyme
3) Cystathione Beta Synthase: a folate and B12 dependent enzyme
Down Syndrome: What Evidence of Excess SOD?

Superoxide Dismutase (SOD) levels are increased (47%) in Down Syndrome children and teenagers.

Overproduction of Superoxide Dismutase (SOD) increases oxidative stress and increases oxidative damage to proteins in children with Down Syndrome.

CuZn-SOD is increased by 50% in Down Syndrome as a result of gene dosing. Excess CuZnSOD might result in peroxidative brain damage and possibly contribute to accelerated aging and age-related neuropathology.

Down Syndrome: Implications of Low Zinc

Low zinc status in Down Syndrome is associated with:
(Mazurek D. Rocz Panstw Zakl Hig 2015;66(3):189-94)

1) decreased immune status
2) decreased growth and body composition
3) thyroid dysfunction
4) altered taste perception
Down Syndrome: Zinc and Immunity

18 children with Down Syndrome
History of recurrent respiratory, ear and skin infections

2 cycles of zinc supplementation 10 months apart
1 mg elemental zinc/kg/day x 2 months each

Decreased infections, increased school attendance, increased T-lymphocytes
Even among children with normal plasma zinc before supplementation
No effect on copper status.

Down Syndrome: Zinc and Immunity

30 children with Down Syndrome

63.2% with low plasma zinc

Supplementation with zinc 5mg/kg Zn x 2 months
Normalized immunity (lymphocyte response).

0 zinc supplements x 22 months
Decreasing immunity (lymphocyte response) by 24 months.

Zinc and Growth

Meta-analysis of 33 zinc supplementation studies and childhood growth.

Highly significant improvements in height
Greatest improvements among children with lowest height-for-age scores.

Highly significant improvements in weight

Down Syndrome: Zinc and Growth

35 children with Down Syndrome

No difference in protein intake, carbohydrate or fat intake
No significant difference in dietary zinc.

Low plasma zinc in Down Syndrome (83%) and controls (61%).
Shorter height in 60% Down Syndrome and 3% of controls.

Down Syndrome: Zinc and Growth

22 children with Down Syndrome

Supplemented with zinc (1 mg/kg) for 6-9 months.

Increased growth percentile and increased growth hormone levels
Increased growth velocity (23.84 --> 40.80 mm over 6 months).

Zinc and Body Composition

9 Elite female athletes

Plasma zinc is negatively associated with % fat mass.
Lower plasma zinc --> higher fat mass

Down Syndrome: Zinc and Body Composition

30 adolescents with Down Syndrome

No difference in protein, fat, carbohydrate or zinc intake
No difference in plasma zinc, though low
Greater zinc losses in urine in Down Syndrome.

More overweight (26.7%) in Down Syndrome.
More obesity (6.6%) in Down Syndrome.

Down Syndrome: Zinc and Thyroid

25 children with Down Syndrome
Plasma zinc low
Higher TSH; no difference in T3 or T4

4 months zinc sulphate supplementation
Plasma zinc normal
TSH on par with control children

Down Syndrome: Zinc and Thyroid

51 children with Down Syndrome

4 months of zinc sulphate supplementation:
Normalized plasma zinc and TSH

1 year after zinc supplementation stopped:
Plasma zinc decreasing
TSH increasing

Zinc and Taste Disorders

22 patients with altered taste acuity (hypogeusia)

Zinc acetate supplementation x 50 mg zinc/day.

Improvement in plasma zinc.
Normalization of taste perception for sweet, salt and bitter.

Down Syndrome: Zinc Safety

Meta-analysis of preventive zinc supplementation studies among infants, preschoolers and older prepubertal children.

Decreased diarrhea x 20%
Decreased acute respiratory infections x 15%
Decreased mortality in children > 1 yr x 18%
Increased growth in height

No adverse effect on iron or copper status.

Zinc Assessment

1) Serum/plasma zinc
 -> recent intake only
 -> many confounding variables

2) Alkaline phosphatase (zinc enzyme)
 -> functional zinc status
 -> unreliable if recent growth as alk phos is mobilized into blood during growth

3) Best approach
 -> combination of serum/plasma zinc AND alkaline phosphatase
Zinc Sources in Diet

Absorption blocked by calcium, iron, fibre, phytate.

Richest food sources:
Seafood
Fish
Liver
Beef, Pork, Chicken
Beans
Cashews
Cheese

US National Institutes of Health, 2013

Glutathione Peroxidase (GPx) in Down Syndrome
Down Syndrome: What Evidence of Excess GPx?

18 children with Down Syndrome
RBC GPx was significantly increased.
Serum selenium was significantly decreased.

29 children with Down Syndrome
RBC GPx in red cells was significantly increased
Plasma selenium was significantly decreased

RBC GPx levels were significantly greater in the DS group
RBC GPx was significantly correlated with memory function.
Brugge K et al. Biol Psychiatry 1999; 46(12): 1682-9

Down Syndrome: Implications of Low Selenium

Low selenium levels in Down Syndrome are associated with:

1) impaired thyroid status
2) decreased immune status
Selenium and Thyroid

109 healthy individuals:

Decreased serum selenium
Decreased T3/T4 ratio
Decreased conversion of T4 to T3 because of low selenium status

Down Syndrome: Selenium and Thyroid

18 adults with Down Syndrome:

Decreased serum selenium
Decreased T4
Increased TSH

Down Syndrome: Selenium and Immunity

1) Natural Killer cells:
 a) Natural Killer (NK) activity is low in Down Syndrome.
 b) Selenium supplementation increased natural killer cell activity in the mouse.

2) T-lymphocyte response:
 a) The T-lymphocyte activation response is patients with dysmorphic disorders.
 Cruz et al. Ann Allergy Asthma Immunol 2009
 b) Selenoprotein deficiency suppresses T-lymphocyte response.

Selenium Assessment

1) Serum/plasma selenium -> reflects only recent selenium intake
2) RBC selenium -> longer term selenium status
3) But, there are no established ‘normal ranges’ for either test

Selenium Sources in the Diet

Richest food sources:

Brazil Nuts
Mixed Nuts and Seeds
Oysters
Fish
Liver
Beef, Pork, Lamb, Chicken
Eggs
Beans

Canadian Nutrient File 2012

Cystathione Beta Synthase (CBS) in Down Syndrome
Down Syndrome: What Evidence of Excess CBS?

Cystathione beta synthase (CBS) levels are increased by approximately three times in the Down Syndrome brain.

High CBS causes homocysteinuria (homocysteine losses) characterized by mental retardation and vascular disease.

The high CBS may explain the cognitive abnormalities in Down Syndrome, and the vulnerability to Alzheimer’s Disease.

Down Syndrome: What Evidence of Excess CBS?

42 children with Down Syndrome and 36 siblings

CBS overexpression (157%) altered homocysteine metabolism causing
a) decreased homocysteine
b) decreased glutathione.
c) folate trap due to inadequate methylation.

Improvements with addition of:
a) methyl-folate (MTHF)
b) methyl-B12 or
c) di-methyl-glycine (DMG)

Folate in Down Syndrome

Down Syndrome: Folate Status

Canadian Health Measures Survey:

5248 people 6-79 years and 1162 women 15-45 years

‘Folate deficiency is virtually nonexistent in the Canadian population’

Very high folate among 40% of the Canadian population

New reference range for ‘normal’ RBC folate: 305-1360 nmol/L

Colapinto CK et al. CMAJ 2011; 183(13): 1515
Down Syndrome: Folate Status

Following folate fortification of flour in US:

Significant increase in maternal folate status.
“Normal” serum and RBC folate in infants with Down Syndrome.

Significant decrease in neural tube defects and cleft palate
7% increase in Down Syndrome births (where no prenatal DS testing)

Down Syndrome: Folate Status

10 children with Down Syndrome
No difference in serum and RBC folate between Down Syndrome and controls

50 children with Down Syndrome
No difference in serum or RBC folate between Down Syndrome and controls

113 patients with Down Syndrome
No difference in serum of RBC folate between Down Syndrome and controls
Folate Assessment

1) Serum/plasma folate -> indicator of recent folate intake

2) RBC folate -> longer term folate status

 Reference range for Canadians: 305-1360 nmol/L

 Caution if RBC folate > 1360 nmol/L

Folate Sources in the Diet

All flour and flour products in Canada are fortified with synthetic folate.
All multi-B, multivitamin and prenatal vitamins contain synthetic folate.
Many protein powders and alternate non-dairy milks are synthetic folate-fortified.

Richest non-synthetic dietary sources:
Liver
Beans and lentils
Dark green vegetables
Sunflower seeds
Potatoes
Fruit

Canadian Nutrient File 2010
B12 in Down Syndrome

Down Syndrome: B12 Status

50 children with Down Syndrome

Increased hemoglobin
Increased mean cell volume (MCV)

No difference in serum or RBC folate
No difference in serum iron or ferritin
No difference in serum B12 (but no test for functional B12 status)

‘Macrocytosis (is) an expression of an altered folate remethylation pathway, secondary to enhance CBS activity, the gene for which is present on chromosome 21’

Down Syndrome: B12 Status

113 patients with Down Syndrome
Increased mean cell volume (MCV)
Decreased serum B12
No difference in serum of RBC folate

10 children with Down Syndrome
Increased hematocrit
Increased mean cell volume (MCV)
Decreased white blood cells (WBC)
No B12 testing
No difference in serum and RBC folate

28 adults with Down Syndrome
Increased mean cell volume (MCV)
Increased mean platelet volume (MPV)

61 adults with Down Syndrome
Increased mean cell volume (MCV)
Decrease red cell survival

147 adults with Down Syndrome
Increased mean cell volume (MCV) in 48%
Decreased white blood cells (WBC) and neutrophils in 20%
Down Syndrome and Leukemia

Myelodysplastic syndrome (MDS) associated with Down syndrome is now considered a unique biologic entity synonymous with Down syndrome-related myeloid leukemia and is biologically distinct from other cases of childhood MDS.

Many hematopoietic developmental defects are observed in neonates with Down Syndrome, even in the absence of transient abnormal myelopoiesis (TAM).

Studies in mouse models have suggested a pathogenic role of deregulated expression of several chromosome 21-encoded genes but their role remains unclear.

B12 and Leukemia

Vitamin B12 deficiency can cause profound alterations in the bone marrow.

These alterations can mimic the more serious diagnosis of acute leukemia.

Two patients were suspected of having acute leukemia or myelodysplasia on the basis of bone marrow smear.

They were both found to have vitamin B12 deficiency.

Parenteral vitamin B12 resulted in normalization of the bone marrow.

B12 and Leukemia

205 children with pancytopenia (decreased red cells, white cells and/or platelets)

Hematological malignancies = 24%

Megaloblastic (B12/folate deficiency) anemia = 20 %

‘Leukemia and bone marrow failure are the most common causes’ of cytopenia.

But ‘megaloblastic anemias are treatable and reversible causes of pancytopenia

B12 and Leukemia

Plasma concentration of methylcobalamin was significantly lower in CML patients than the reference population.

Low methylcobalamin was associated with a poor prognosis.

In the mouse model of L1210 leukemia, vitamin B12 + vitamin C inhibited cell abnormal growth and increased survival.

Down Syndrome and Myelination

Down syndrome is characterized by reduced number of neurons and delayed myelination. Kanaumi T et al. Int J Dev Neurosci 2013; 31 (8) : 796-803

120 children with Down Syndrome - Delayed myelination in 22.5%.

18 month old infant with DS - Brain myelination equivalent to an 11-month infant.

B12 Deficiency and Myelination

Vitamin B(12) deficiency produces a cluster of neurological symptoms. The underlying mechanisms = delayed myelination or demyelination.

14 cases of early-onset cobalamin (B12) deficiency. Mental retardation was identified in most cases.

Variable degree of white matter atrophy (altered myelination) was detected.

Selective white matter involvement was the most consistent finding of B12 deficiency.

B12 Deficiency and Myelination

14.5-month-old child of vegetarian parents, with severe psychomotor retardation.

MRI of the brain revealed severe brain atrophy with retarded myelination. The frontal and temporal lobes were the most severely affected.

This myelination retardation was due to insufficient intake of vitamin B12. The patient responded well to B12 therapy with improvement of clinical and imaging abnormalities.

B12 and Major Depressive Episode/Psychosis

The cerebral symptoms may be classified as mental and ophthalmological. The mental symptoms are extremely variable and include mild disorders of mood, mental slowness, memory defect which may be gross, confusion, severe agitation and depression, delusions and paranoid behaviour, visual and auditory hallucinations, urinary and faecal incontinence in the absence of overt spinal lesions, dysphasia, violent maniacal behaviour, and epilepsy.

In the absence of anaemia or of spinal signs the diagnosis of vitamin-B12 deficiency may never be considered until the psychosis is far too advanced to respond to treatment.

B12 and Major Depressive Episode/Psychosis

A 12-year-old boy presented with aphasia, tremor and nervousness for 2-years:
Wholly healthy initially
Had given up his schooling 2 years ago without any reason
Had started to become introverted.

At that time he had stopped eating, sometimes for up to three days.
He had become angry and had begun to hit his mother and brothers.
Self-care had been reduced.
He had become bedridden and could not even walk and sleep.

He had been speaking and smiling to himself.
The tremors had begun six months ago.
B12 and Major Depressive Episode/Psychosis

Mean corpuscular volume (MCV) was 98 fl.
Serum vitamin B12 level was <150 pg ml$^{-1}$

He was started on vitamin B12 injections at a dose of 1000 mg day.
He showed improvement within one week.

In the seven days of hospitalization, he had no tremors.
He had begun to walk, speak, and was functioning independently.

B12 Assessment

1) No gold standard for the diagnosis of cobalamin deficiency.
2) Therapeutic trials with pharmacologic doses of cobalamin are suggested when findings consistent with cobalamin deficiency are present regardless of the results of diagnostic tests.

Serum B12 can be repeatedly normal in the presence of haematological and neurological symptoms of B12 deficiency.

High intakes of folic acid from fortified food and dietary supplements might mask the macrocytic anemia of vitamin B12 deficiency, eliminating an important diagnostic sign.

Occult cobalamin deficiency could become a common disorder.

B12 Assessment

1) Serum B12
 Recent intake only -> will show high if supplementation
 Caution if < 400 (Japanese cutoff for serum B12)

2) MCV and MCH
 If high, may indicate folate or B12 deficiency.
 Test for RBC folate to differentiate.

3) White cell count (WBC) and subsets, red cell count (RBC) and platelets
 If low, may indicate B12 deficiency.
 Test response to sublingual B12 before considering leukemia

4) Homocysteine
 Will be low in Down Syndrome because of CBS overexpression on chromosome 21

B12 Sources in the Diet

Only 1% of dietary B12 is passively absorbed.
99% requires Intrinsic Factor, produced in the gut

Best dietary sources:
Clams
Liver
Seafood
Trout and Salmon
Beef and wild game

Canadian Nutrient File 2010
US National Institutes of Health 2011
Iron in Down Syndrome

Down Syndrome: Importance of Iron

Human infants with iron deficiency anemia test lower in cognitive, motor, social-emotional, and neurophysiologic development than comparison group infants.

Increased likelihood of mild/moderate mental retardation associated with anemia ... independent of birth weight, maternal education, sex, race-ethnicity, the mother’s age, or the child’s age at entry into the US WIC (Women, Infants and Children Supplementation program.

Down Syndrome: Importance of Iron

Rats were fed an iron-deficient diet and investigated for 4 weeks.

The iron deficient diet after 2 weeks caused:
- Depleted iron stores (decreased liver, serum iron, and ferritin)
- Reduced erythropoiesis
- Significantly decreased transferrin saturation
- Significantly decreased lung iron stores
- Profound pulmonary vascular remodeling
- Increased expression of hypoxia-induced factor-1α
- Increased expression of hypoxia-induced factor-2α

Cotroneo E. Circ Resp 2015; 116(10):1680-1690

Down Syndrome: Iron Deficiency

114 children with Down Syndrome
- Iron deficiency in 10%
- Iron deficiency anemia in 3%

“Screening should include CBC, transferrin saturation and ferritin”

149 children with Down Syndrome
- Anemia in 8.1%
- **Iron deficiency in 50% of children tested for iron. (19/38)**

Iron Assessment

1) Serum Ferritin
An acute phase reactant -> can be falsely high if infection or inflammation
Can be high if insufficient B12 for attachment of iron to red cells
Caution if ferritin < 30

2) Mean Cell Volume (MCV) and Mean Cell Hemoglobin
Low MCV and MCH in uncomplicated iron deficiency
May be normal or high if co-existing B12 or folate deficiency
Caution if <75-80 or >90-95

Iron Assessment

3) Iron Saturation
May be low if iron deficiency
May be low if B12 deficiency

4) Serum iron
Recent iron intake; not functional iron status

5) Hemoglobin/Hematocrit
Not specific to iron deficiency
If low – can be iron, B12 or folate deficiency
Need to test ferritin and RBC folate to determine which deficiency
Iron Sources in the Diet

Heme iron has a higher absorption, and comes from animal products
Non-heme iron absorption is decreased by the fiber and phytate.
Iron absorption is enhanced by vitamin C, and blocked by calcium

Richest dietary sources of heme iron:
Liver and kidney
Red meat
Seafood
Fish

Richest dietary sources of non-heme iron:
Beans and Soybeans
Spinach and dark greens
Fortified cereals

Canadian Nutrient File 2010

Vitamin A in Down Syndrome
Down Syndrome: Vitamin A Deficiency

38 children with Down Syndrome
Serum retinol deficiency (<20mg/dL) in 18.4%

12 patients with Down Syndrome
Lower plasma and red cell retinol.

33 patients with Down Syndrome
No difference in vitamin A intake, serum vitamin A or Vitamin A absorption
But skin symptoms of hypovitaminosis A

Vitamin A Assessment and Dietary Sources

Vitamin A assessment
Serum Vitamin A (retinol): recent intake only

Richest dietary sources
Liver
Cod Liver Oil

Eggs
Goat cheese
Cow cheese

Orange vegetables (sweet potato, pumpkin, carrots)
Green vegetables (spinach, kale, swiss chard)

Canadian Nutrient File 2010
Clinical Pearls

SOD is high in Down Syndrome
Zinc is often low in Down Syndrome
Zinc supplementation can increase growth in Down Syndrome
Zinc supplementation can improve immune function in Down Syndrome
Zinc supplementation can improve thyroid function in Down Syndrome

CBS is high in Down Syndrome
Macrocytosis is often present in Down Syndrome, with normal folate status
B12 deficiency can alter red cell, white cell and platelet production
B12 therapy can improve red cell, white cell and platelet production
B12 deficiency can decrease myelination and brain growth in infancy/childhood.
B12 therapy can improve symptoms of childhood myelination disorders.
B12 deficiency can cause demyelination in adults.
B12 therapy can improve symptoms of demyelination in adults.
Clinical Pearls

Iron deficiency is common in Down Syndrome. Iron deficiency and anemia can lead to significant changes in neurodevelopment. Low iron or low B12 can decrease transferrin saturation. Low transferrin saturation can contribute to episodic low oxygen, esp. when heart rate is low (during sleep).

Best dietary sources for zinc, iron, selenium, vitamin A and B12:
- Liver
- Red meat
- Game
- Eggs
- Fish
- … With copious addition of vegetables, especially dark green vegetables, for folate.

Case Studies
Case Study 1:

21 year old female with Down Syndrome

History of leukemia at age 6 -> Tmt x 3 years
Ongoing white cell suppression

History of Graves Disease at age 20
Radioactive I tmt -> permanent hypothyroidism

Excellent comprehension (receptive language)
Non-verbal

Poor physical stamina
No independent toileting, hx of constipation
Anxious with many hand-eye stims and hand-flapping
Significant chewing of non-food items and clothing
Significant need for deep pressure
Significant sleep issues

Case Study 1:

Blood Profile (November 2008):

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Normal Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemoglobin</td>
<td>155</td>
<td>120-160</td>
</tr>
<tr>
<td>Hematocrit</td>
<td>0.45*</td>
<td>0.35-0.45</td>
</tr>
<tr>
<td>White Blood Cell</td>
<td>3.7*</td>
<td>4-11</td>
</tr>
<tr>
<td>Red Blood Cell</td>
<td>4.52</td>
<td>4-6</td>
</tr>
<tr>
<td>MCV</td>
<td>99.1*</td>
<td>80-97</td>
</tr>
<tr>
<td>MCH</td>
<td>34.3*</td>
<td>27.5-33</td>
</tr>
<tr>
<td>Platelets</td>
<td>179</td>
<td>150-400</td>
</tr>
<tr>
<td>Neutrophils</td>
<td>2.0*</td>
<td>2.0-7.5</td>
</tr>
<tr>
<td>RBC Folate</td>
<td>947</td>
<td>>362</td>
</tr>
<tr>
<td>Ferritin</td>
<td>82</td>
<td>80-300</td>
</tr>
<tr>
<td>TSH</td>
<td>2.95</td>
<td>0.5-4.5</td>
</tr>
</tbody>
</table>
Case Study 1:
Interventions:

1) Give thyroxine medication upon waking; not at night

2) B12: Nasal spray (625 mcg methyl) x 1/day (AM)
Methyl 5 mg lozenge (PM)

3) Zinc: 30 mg zinc citrate capsule x 1/bedtime
In applesauce away from dairy

4) Vitamin C: 500 mg time-release
With zinc, at bedtime, in applesauce

5) Diet: increase animal protein
eliminate bananas
limit dairy to 2-3 servings/day

Case Study 1:
Outcomes (Subjective) – Dec 2008 and Feb 2009

Much better mood and many more smiles
Much calmer, brighter and more engaged
Able to have quiet time alone without monitoring
Better eye contact
Decreased anxiety
No more compulsive need to play with feces
Is independently going to the toilet but needs help with wiping
Bowel movements daily, regular and pain-free
Walking much more instead of just sitting on floor
More stamina
Is using sign language a lot
Communicating meaningfully and frequently with parents
Sleeping well
Case Study 1:
Blood Profile – October 2009

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
<th>Normal Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemoglobin</td>
<td>148</td>
<td>(150) 120-160</td>
</tr>
<tr>
<td>Hematocrit</td>
<td>0.43</td>
<td>(0.45) 0.35-0.45</td>
</tr>
<tr>
<td>White Blood Cell</td>
<td>4.2</td>
<td>(3.7) 4-11</td>
</tr>
<tr>
<td>Red Blood Cell</td>
<td>4.2</td>
<td>(4.52) 4-6</td>
</tr>
<tr>
<td>MCV</td>
<td>97</td>
<td>(99.1) 80-97</td>
</tr>
<tr>
<td>MCH</td>
<td>33.7</td>
<td>(34.3) 27.5-33</td>
</tr>
<tr>
<td>Platelets</td>
<td>179</td>
<td>(175) 150-400</td>
</tr>
<tr>
<td>Neutrophils</td>
<td>2.2</td>
<td>(2.0) 2.0-7.5</td>
</tr>
<tr>
<td>RBC Folate</td>
<td>947</td>
<td>>362</td>
</tr>
<tr>
<td>Ferritin</td>
<td>106</td>
<td>(82) 80-300</td>
</tr>
<tr>
<td>TSH</td>
<td>1.14</td>
<td>(2.95) 0.5-4.5</td>
</tr>
</tbody>
</table>

Case Study 2:

4.75 year old boy with Down Syndrome
Duodenal repair at 4 months
Heart repair at 5 months

Progressing appropriately for Down Syndrome until 2.5 years
Diagnosed with acquired/regressive autism at age 3

Loss of language and happiness
Loss of eye contact
Temper meltdowns
Head banging
Decreased socialization and interactiveness
Need for deep pressure
Failure to thrive (no wt gain over 1 year)
Significant decrease in immune competence
Constipation
Does not like feet to touch ground; does not want to walk
Case Study 2:

Blood Profile – May 2009

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Normal Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemoglobin</td>
<td>136</td>
<td>120-160</td>
</tr>
<tr>
<td>Hematocrit</td>
<td>0.402</td>
<td>0.35-0.45</td>
</tr>
<tr>
<td>White Blood Cell</td>
<td>3.9</td>
<td>4-11</td>
</tr>
<tr>
<td>Red Blood Cell</td>
<td>4.43</td>
<td>4-6</td>
</tr>
<tr>
<td>MCV</td>
<td>90.7</td>
<td>75-90</td>
</tr>
<tr>
<td>MCH</td>
<td>30.7</td>
<td>27.5-33</td>
</tr>
<tr>
<td>Platelets</td>
<td>340</td>
<td>150-400</td>
</tr>
<tr>
<td>Lymphocytes</td>
<td>0.95</td>
<td>1.5-6.5</td>
</tr>
<tr>
<td>RBC Folate</td>
<td>2449</td>
<td>>364</td>
</tr>
<tr>
<td>Ferritin</td>
<td>50</td>
<td>80-300</td>
</tr>
<tr>
<td>TSH</td>
<td>not available</td>
<td></td>
</tr>
</tbody>
</table>

Case Study 2:

Interventions

1. Eliminate folate-containing multivitamins
2. 20 mg Iron with 500 mg Vit C x 1/2nd night
3. 60 mg Zinc Citrate x 1/2nd night
4. B12: 1000 mcg hydroxy + 5000 mcg methyl at breakfast 5000 mcg methyl at lunch and supper
5. Probiotic: daily, on empty stomach
6. Diet: increase protein
 - Fruit at beginning of meals; stop bananas
 - Use non-dairy milks
 - Add nuts for fibre and oils
Case Study 2:
Outcomes (Subjective) – July through Nov 2009

Increased eye contact
Increased signing and use of PEC symbols
Lots of smiling, laughing and social engagement
Lots of spontaneous hugging of family members
Calm, focused and able to relax
No more head banging; minimal tempers
Increased appetite and range of foods
Sudden increase in length and weight (2 inches in 3 months)
Legs are more solid; willing to walk more
Increased ability to chew and swallow
Increased mimicking (burping friend’s doll, playing piano)
More musical – has started drumming again
Very interested in world around him
Constipation resolved with addition of probiotic and 125 mg magnesium
Good immunity

Case Study 2:
Blood Profile – November 2009

<table>
<thead>
<tr>
<th>Test</th>
<th>Value 1</th>
<th>Value 2 (Normal)</th>
<th>Normal Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemoglobin</td>
<td>134</td>
<td>(136)</td>
<td>120-160</td>
</tr>
<tr>
<td>Hematocrit</td>
<td>0.38</td>
<td>(0.402)</td>
<td>0.35-0.45</td>
</tr>
<tr>
<td>White Blood Cell</td>
<td>4.8</td>
<td>(3.9)</td>
<td>4-11</td>
</tr>
<tr>
<td>Red Blood Cell</td>
<td>4.31</td>
<td>(4.43)</td>
<td>4-6</td>
</tr>
<tr>
<td>MCV</td>
<td>88.2</td>
<td>(90.7)</td>
<td>75-90</td>
</tr>
<tr>
<td>MCH</td>
<td>31.1</td>
<td>(30.7)</td>
<td>27.5-33</td>
</tr>
<tr>
<td>Platelets</td>
<td>265</td>
<td>(340)</td>
<td>150-400</td>
</tr>
<tr>
<td>Lymphocytes</td>
<td>1.17</td>
<td>(0.95)</td>
<td>1.5-6.5</td>
</tr>
<tr>
<td>RBC Folate</td>
<td>1959</td>
<td>(2449)</td>
<td>>364</td>
</tr>
<tr>
<td>Ferritin</td>
<td>111</td>
<td>(50)</td>
<td>80-300</td>
</tr>
<tr>
<td>TSH</td>
<td>4.36</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>